Chloroplast NADPH-Dependent Thioredoxin Reductase from Chlorella vulgaris Alleviates Environmental Stresses in Yeast Together with 2-Cys Peroxiredoxin

نویسندگان

  • Takeshi Machida
  • Akiko Ishibashi
  • Ai Kirino
  • Jun-ichi Sato
  • Shinji Kawasaki
  • Youichi Niimura
  • Ken-ichi Honjoh
  • Takahisa Miyamoto
چکیده

Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase.

The chloroplast-localized NADPH-dependent thioredoxin reductase (NTRC) has been found to be able to reduce hydrogen peroxide scavenging 2-Cys peroxiredoxins. We show that the Arabidopsis ntrc mutant is perturbed in chlorophyll biosynthesis and accumulate intermediates preceding protochlorophyllide formation. A specific involvement of NTRC during biosynthesis of protochlorophyllide is indicated ...

متن کامل

Replacement of threonine-55 with glycine decreases the reduction rate of OsTrx20 by glutathione

Thioredoxins (Trxs) are small ubiquitous oxidoreductase proteins with two redox-active Cys residues in a conserved active site (WCG/PPC) that regulate numerous target proteins via thiol/disulfide exchanges in the cells of prokaryotes and eukaryotes. The isoforms OsTrx23 with a typical active site (WCGPC) and OsTrx20 with an atypical active site (WCTPC) are two  Trx h- type isoforms in rice that ...

متن کامل

Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x.

In addition to the standard NADPH thioredoxin reductases (NTRs), plants hold a plastidic NTR (NTRC), with a thioredoxin module fused at the C-terminus. NTRC is an efficient reductant of 2-Cys peroxiredoxins (2-Cys Prxs). The interaction of NTRC and chloroplastic thioredoxin x with 2-Cys Prxs has been confirmed in vivo, by bimolecular fluorescence complementation (BiFC) assays, and in vitro, by ...

متن کامل

Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.

One of the mechanisms plants have developed for chloroplast protection against oxidative damage involves a 2-Cys peroxiredoxin, which has been proposed to be reduced by ferredoxin and plastid thioredoxins, Trx x and CDSP32, the FTR/Trx pathway. We show that rice (Oryza sativa) chloroplast NADPH THIOREDOXIN REDUCTASE (NTRC), with a thioredoxin domain, uses NADPH to reduce the chloroplast 2-Cys p...

متن کامل

The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts

Hydrogen peroxide is a harmful by-product of photosynthesis, which also has important signalling activity. Therefore, the level of hydrogen peroxide needs to be tightly controlled. Chloroplasts harbour different antioxidant systems including enzymes such as the 2-Cys peroxiredoxins (2-Cys Prxs). Under oxidizing conditions, 2-Cys Prxs are susceptible to inactivation by overoxidation of their per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012